Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nat Commun ; 14(1): 122, 2023 01 18.
Article in English | MEDLINE | ID: covidwho-2185828

ABSTRACT

Large-scale events like the UEFA Euro 2020 football (soccer) championship offer a unique opportunity to quantify the impact of gatherings on the spread of COVID-19, as the number and dates of matches played by participating countries resembles a randomized study. Using Bayesian modeling and the gender imbalance in COVID-19 data, we attribute 840,000 (95% CI: [0.39M, 1.26M]) COVID-19 cases across 12 countries to the championship. The impact depends non-linearly on the initial incidence, the reproduction number R, and the number of matches played. The strongest effects are seen in Scotland and England, where as much as 10,000 primary cases per million inhabitants occur from championship-related gatherings. The average match-induced increase in R was 0.46 [0.18, 0.75] on match days, but important matches caused an increase as large as +3. Altogether, our results provide quantitative insights that help judge and mitigate the impact of large-scale events on pandemic spread.


Subject(s)
COVID-19 , Soccer , Humans , Bayes Theorem , COVID-19/epidemiology , England , Scotland
2.
Chaos, Solitons & Fractals ; 167:113093, 2023.
Article in English | ScienceDirect | ID: covidwho-2165144

ABSTRACT

Genomic surveillance of infectious diseases allows monitoring circulating and emerging variants and quantifying their epidemic potential. However, due to the high costs associated with genomic sequencing, only a limited number of samples can be analysed. Thus, it is critical to understand how sampling impacts the information generated. Here, we combine a compartmental model for the spread of COVID-19 (distinguishing several SARS-CoV-2 variants) with different sampling strategies to assess their impact on genomic surveillance. In particular, we compare adaptive sampling, i.e., dynamically reallocating resources between screening at points of entry and inside communities, and constant sampling, i.e., assigning fixed resources to the two locations. We show that adaptive sampling uncovers new variants up to five weeks earlier than constant sampling, significantly reducing detection delays and estimation errors. This advantage is most prominent at low sequencing rates. Although increasing the sequencing rate has a similar effect, the marginal benefits of doing so may not always justify the associated costs. Consequently, it is convenient for countries with comparatively few resources to operate at lower sequencing rates, thereby profiting the most from adaptive sampling. Finally, our methodology can be readily adapted to study undersampling in other dynamical systems.

4.
Lancet Reg Health Eur ; 12: 100277, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1549972
5.
Sci Adv ; 7(41): eabg2243, 2021 Oct 08.
Article in English | MEDLINE | ID: covidwho-1469368

ABSTRACT

The traditional long-term solutions for epidemic control involve eradication or population immunity. Here, we analytically derive the existence of a third viable solution: a stable equilibrium at low case numbers, where test-trace-and-isolate policies partially compensate for local spreading events and only moderate restrictions remain necessary. In this equilibrium, daily cases stabilize around ten or fewer new infections per million people. However, stability is endangered if restrictions are relaxed or case numbers grow too high. The latter destabilization marks a tipping point beyond which the spread self-accelerates. We show that a lockdown can reestablish control and that recurring lockdowns are not necessary given sustained, moderate contact reduction. We illustrate how this strategy profits from vaccination and helps mitigate variants of concern. This strategy reduces cumulative cases (and fatalities) four times more than strategies that only avoid hospital collapse. In the long term, immunization, large-scale testing, and international coordination will further facilitate control.

6.
PLoS Comput Biol ; 17(9): e1009288, 2021 09.
Article in English | MEDLINE | ID: covidwho-1394527

ABSTRACT

Mass vaccination offers a promising exit strategy for the COVID-19 pandemic. However, as vaccination progresses, demands to lift restrictions increase, despite most of the population remaining susceptible. Using our age-stratified SEIRD-ICU compartmental model and curated epidemiological and vaccination data, we quantified the rate (relative to vaccination progress) at which countries can lift non-pharmaceutical interventions without overwhelming their healthcare systems. We analyzed scenarios ranging from immediately lifting restrictions (accepting high mortality and morbidity) to reducing case numbers to a level where test-trace-and-isolate (TTI) programs efficiently compensate for local spreading events. In general, the age-dependent vaccination roll-out implies a transient decrease of more than ten years in the average age of ICU patients and deceased. The pace of vaccination determines the speed of lifting restrictions; Taking the European Union (EU) as an example case, all considered scenarios allow for steadily increasing contacts starting in May 2021 and relaxing most restrictions by autumn 2021. Throughout summer 2021, only mild contact restrictions will remain necessary. However, only high vaccine uptake can prevent further severe waves. Across EU countries, seroprevalence impacts the long-term success of vaccination campaigns more strongly than age demographics. In addition, we highlight the need for preventive measures to reduce contagion in school settings throughout the year 2021, where children might be drivers of contagion because of them remaining susceptible. Strategies that maintain low case numbers, instead of high ones, reduce infections and deaths by factors of eleven and five, respectively. In general, policies with low case numbers significantly benefit from vaccination, as the overall reduction in susceptibility will further diminish viral spread. Keeping case numbers low is the safest long-term strategy because it considerably reduces mortality and morbidity and offers better preparedness against emerging escape or more contagious virus variants while still allowing for higher contact numbers (freedom) with progressing vaccinations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Mass Vaccination , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/prevention & control , Child , Child, Preschool , European Union/statistics & numerical data , Humans , Infant , Infant, Newborn , Mass Vaccination/legislation & jurisprudence , Mass Vaccination/statistics & numerical data , Middle Aged , Young Adult
7.
Lancet Infect Dis ; 21(6): 745-746, 2021 06.
Article in English | MEDLINE | ID: covidwho-1142347
8.
Front Public Health ; 8: 556689, 2020.
Article in English | MEDLINE | ID: covidwho-1067674

ABSTRACT

In the absence of a consensus protocol to slow down the spread of SARS-CoV-2, policymakers need real-time indicators to support decisions in public health matters. The Effective Reproduction Number (R t ) represents the number of secondary infections generated per each case and can be dramatically modified by applying effective interventions. However, current methodologies to calculate R t from data remain somewhat cumbersome, thus raising a barrier between its timely calculation and application by policymakers. In this work, we provide a simple mathematical formulation for obtaining the effective reproduction number in real-time using only and directly daily official case reports, obtained by modifying the equations describing the viral spread. We numerically explore the accuracy and limitations of the proposed methodology, which was demonstrated to provide accurate, timely, and intuitive results. We illustrate the use of our methodology to study the evolution of the pandemic in different iconic countries, and to assess the efficacy and promptness of different public health interventions.


Subject(s)
Basic Reproduction Number , COVID-19/epidemiology , Health Policy , Models, Statistical , Public Health , Humans , SARS-CoV-2
9.
Nat Commun ; 12(1): 378, 2021 01 15.
Article in English | MEDLINE | ID: covidwho-1033854

ABSTRACT

Without a cure, vaccine, or proven long-term immunity against SARS-CoV-2, test-trace-and-isolate (TTI) strategies present a promising tool to contain its spread. For any TTI strategy, however, mitigation is challenged by pre- and asymptomatic transmission, TTI-avoiders, and undetected spreaders, which strongly contribute to "hidden" infection chains. Here, we study a semi-analytical model and identify two tipping points between controlled and uncontrolled spread: (1) the behavior-driven reproduction number [Formula: see text] of the hidden chains becomes too large to be compensated by the TTI capabilities, and (2) the number of new infections exceeds the tracing capacity. Both trigger a self-accelerating spread. We investigate how these tipping points depend on challenges like limited cooperation, missing contacts, and imperfect isolation. Our results suggest that TTI alone is insufficient to contain an otherwise unhindered spread of SARS-CoV-2, implying that complementary measures like social distancing and improved hygiene remain necessary.


Subject(s)
COVID-19 Testing/methods , COVID-19/prevention & control , Contact Tracing/methods , Mass Screening/methods , SARS-CoV-2/isolation & purification , Algorithms , COVID-19/epidemiology , COVID-19/virology , Communicable Disease Control/methods , Humans , Models, Theoretical , Pandemics , Reproducibility of Results , SARS-CoV-2/physiology
10.
Chaos Solitons Fractals ; 139: 110087, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-628272

ABSTRACT

COVID-19 pandemic has reshaped our world in a timescale much shorter than what we can understand. Particularities of SARS-CoV-2, such as its persistence in surfaces and the lack of a curative treatment or vaccine against COVID-19, have pushed authorities to apply restrictive policies to control its spreading. As data drove most of the decisions made in this global contingency, their quality is a critical variable for decision-making actors, and therefore should be carefully curated. In this work, we analyze the sources of error in typically reported epidemiological variables and usual tests used for diagnosis, and their impact on our understanding of COVID-19 spreading dynamics. We address the existence of different delays in the report of new cases, induced by the incubation time of the virus and testing-diagnosis time gaps, and other error sources related to the sensitivity/specificity of the tests used to diagnose COVID-19. Using a statistically-based algorithm, we perform a temporal reclassification of cases to avoid delay-induced errors, building up new epidemiologic curves centered in the day where the contagion effectively occurred. We also statistically enhance the robustness behind the discharge/recovery clinical criteria in the absence of a direct test, which is typically the case of non-first world countries, where the limited testing capabilities are fully dedicated to the evaluation of new cases. Finally, we applied our methodology to assess the evolution of the pandemic in Chile through the Effective Reproduction Number Rt , identifying different moments in which data was misleading governmental actions. In doing so, we aim to raise public awareness of the need for proper data reporting and processing protocols for epidemiological modelling and predictions.

11.
Chaos Solitons Fractals ; 136: 109925, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-361398

ABSTRACT

The outbreak and propagation of COVID-19 have posed a considerable challenge to modern society. In particular, the different restrictive actions taken by governments to prevent the spread of the virus have changed the way humans interact and conceive interaction. Due to geographical, behavioral, or economic factors, different sub-groups among a population are more (or less) likely to interact, and thus to spread/acquire the virus. In this work, we present a general multi-group SEIRA model for representing the spread of COVID-19 among a heterogeneous population and test it in a numerical case of study. By highlighting its applicability and the ease with which its general formulation can be adapted to particular studies, we expect our model to lead us to a better understanding of the evolution of this pandemic and to better public-health policies to control it.

12.
Non-conventional in English | WHO COVID | ID: covidwho-725076

ABSTRACT

Due to the particularities of SARS-CoV-2, public health policies have played a crucial role in the control of the COVID-19 pandemic. Epidemiological parameters for assessing the stage of the outbreak, such as the Effective Reproduction Number (R-t), are not always straightforward to calculate, raising barriers between the scientific community and non-scientific decision-making actors. The combination of estimators ofR(t)with elaborated Machine Learning-based forecasting techniques provides a way to support decision-making when assessing governmental plans of action. In this work, we develop forecast models applying logistic growth strategies and auto-regression techniques based on Auto-Regressive Integrated Moving Average (ARIMA) models for each country that records information about the COVID-19 outbreak. Using the forecast for the main variables of the outbreak, namely the number of infected (I), recovered (R), and dead (D) individuals, we provide a real-time estimation ofR(t)and its temporal evolution within a timeframe. With such models, we evaluateR(t)trends at the continental and country levels, providing a clear picture of the effect governmental actions have had on the spread. We expect this methodology of combining forecast models for raw data to calculateR(t)to serve as valuable input to support decision-making related to controlling the spread of SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL